α-Methyltetronic Acid. A Refinement of the Structure Based on New Experimental Data

By E. Krogh Andersen and I. G. Krogh Andersen
Chemical Institute, The University of Odense, Denmark

(Received 9 July 1974; accepted 21 August 1974)

Abstract

The refinement was based on three-dimensional data collected with Cu and Mo radiation (Cu data 424 reflexions $>2 \sigma$, final $R=0.053$; Mo data 919 reflexions $>2 \sigma$, final $R=0.050$). The hydrogen atoms have been located. Most of the carbon and oxygen atoms of the molecule are coplanar. The hetero atom and an adjacent carbon atom are displaced from this plane (by up to $0.02 \AA$).

α-Methyltetronic acid ($\mathrm{R}_{\alpha}=\mathrm{CH}_{3} \mathrm{R}_{\gamma}=\mathrm{R}_{\gamma^{\prime}}=\mathrm{H}$ in formula I) is the simplest tetronic acid derivative whose structure has been determined (MacDonald \& Alleyne, 1963).

The structure of α, γ-dimethyltetronic acid ($\mathrm{R}_{\alpha}=\mathrm{R}_{\gamma}=$ $\mathrm{CH}_{3}, \mathrm{R}_{\gamma^{\prime}}=\mathrm{H}$) has been determined by Lawrence \& MacDonald (1969), and that of ascorbic acid ($\mathrm{R}_{\alpha}=\mathrm{OH}$, $\mathrm{R}_{y}=-\mathrm{CHOHCH}_{2} \mathrm{OH}, \mathrm{R}_{\gamma^{\prime}}=\mathrm{H}$) by Hvoslef (1968). The results of these determinations are compared in the concluding section with the results of the present study.

The reinvestigation of the crystal structure of α methyltetronic acid was made for the following reasons:

1. The molecular structures of tetronic acids are important in connexion with our attempts to find correlations between structure and acidic strength (Andersen, 1971).
2. The original determination by MacDonald \& Alleyne, although correct, is rather inaccurate (mainly due to the poor crystal material available to them).
3. Only a limited number of observed structure factors were used in MacDonald \& Alleyne's refinement of the structure.

Experimental

Density measurements (by flotation), lattice constants determination (by quartz-calibrated Guinier-Hägg diagrams) and single-crystal diagrams provided data in excellent agreement with MacDonald \& Alleyne's findings. These data are recorded in Table 1.

The intensity data were collected on an automatic diffractometer (scintillation counter and pulse-height discriminator). Nickel-filtered $\mathrm{Cu} K \alpha$ and zirconiumfiltered Mo $K \alpha$ radiation was used. Intensities were recorded in the ω scanning mode (scan angle $1 \cdot 4^{\circ}$, scanning speed $1.25^{\circ} \mathrm{min}^{-1}$). Background measure-

Table 1. Crystal data for α-methyltetronic acid
Values in parentheses are standard deviations. Values in square brackets are from MacDonald \& Alleyne (1963).

ments were made for half the scan time at each end of the scanning interval. The 080 reflexion was measured every 15 reflexions. These measurements enabled the calculation of scale factors for each group of 15 reflexions. These factors were in the range 0.99-1.04.

All reflexions (459) within the range $0.04 \leq \sin \theta / \lambda \leq$ 0.47 were measured with Cu radiation. 35 had intensities less than twice the standard deviation of the measurement and were discarded. The remaining 424 were corrected for Lorentz and polarization factors and converted into structure factors (Cu I data set). Data were also collected with Mo $K \alpha$ radiation. All

Fig. 1. Difference synthesis showing hydrogen atom peaks.
reflexions (1121) within the range $0.08 \leq \sin \theta / \lambda \leq 0.64$ were measured. 202 had intensities less than twice the standard deviation of the measurement and were discarded. The remaining 919 were corrected for Lorentz and polarization factors and converted into structure factors (Mo II data set).

Structure refinement

Structure-factor calculations based on MacDonald \& Alleyne's parameters gave, when compared with the Cu I data set, $R=0 \cdot 27$, which showed that the structure determination was correct (although probably not very accurate).

The structure was refined by full-matrix least-squares calculations with the ORFLS program of the X-RAY 70 calculating system (Stewart, Kundell \& Baldwin, 1970). The quantity minimized was $\sum w\left(F_{o}-\right.$ $\left.F_{c}\right)^{2}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). Unit weights were initially used and the subsequent weighting scheme was $w=\left(a+F_{o}+b F_{o}^{2}\right)^{-1}$. Finally, unit weights were again used. These gave mean values of $w\left(F_{o}-F_{c}\right)^{2}$ almost independent of $\sin \theta$ and magnitude of F_{0}. In the first calculations isotropic temperature factors were used (resulting $R=0 \cdot 16$); later anisotropic temperature factors were used (resulting $R=0.099$). From a difference synthesis calculated at this stage the hydrogen atoms were located and included in the leastsquares calculations with fixed parameters. Parameters from the final calculations are given in Table 2. The average ratio parameter shift/standard deviation was $0 \cdot 61$. The R index was 0.053 .
The refinement based on the Mo II data set followed a similar course. The weighting scheme was $w=(a+$ $\left.F_{o}+b F_{o}^{2}\right)^{-1}$. With $a=1.68$ and $b=0.024$ this gave average $w\left(F_{o}-F_{c}\right)^{2}$ values nearly independent of θ and magnitude of F_{o}. Two cycles of least-squares calculations with starting parameters for the carbon and oxygen
atoms from the refinement based on the Cu I data set were followed by the calculation of three-dimensional difference electron-density maps. Fig. 1 is a composite diagram of these maps showing the hydrogen-atom peaks. The difference Fourier map provided positional parameters for the six hydrogen atoms in the asymmetric unit. Finally two cycles of least-squares refinement were performed in which all parameters except the

Table 2. Final atomic parameters and standard deviations
For the numbering of atoms see Fig. 3. The first line gives the parameters obtained from the CuI data, the second those from the Mo II data.
(a) Positional parameters $\left(\times 10^{4}\right)$

		x	y	z
$\mathrm{O}(1)$	Cu I	9067 (11)	1628 (2)	4191 (7)
	Mo II	9077 (7)	1625 (1)	4182 (4)
$\mathrm{O}(3)$		635 (10)	932 (2)	-2272 (6)
		624 (6)	932 (1)	-2274 (4)
O(4)		6777 (9)	2046 (2)	852 (6)
		6792 (6)	2045 (1)	849 (4)
C(1)		7012 (15)	1574 (3)	2311 (11)
		7020 (9)	1574 (2)	2320 (5)
C(2)		4691 (14)	1074 (2)	1331 (9)
		4684 (8)	1078 (1)	1323 (5)
C(3)		3023 (14)	1258 (2)	-750 (9)
		3014 (8)	1254 (1)	-760 (5)
C(4)		4151 (14)	1890 (2)	-1217 (8)
		4186 (9)	1885 (2)	-1197 (5)
C(22)		4363 (16)	485 (2)	2511 (9)
		4389 (10)	488 (2)	2530 (6)
H(3)		9750	1170	-3120
		9824 (92)	1173 (16)	6419 (56)
H(41)		5670	1900	-2560
		5196 (96)	1913 (18)	7506 (56)
H(42)		2150	2340	-1700
		2193 (101)	2206 (17)	8418 (61)
H(221)		6500	120	3160
		6408 (110)	280 (18)	2513 (69)
H(222)		2660	190	1440
		2322 (111)	240 (17)	1696 (70)
H(223)		3890	650	3640
		3667 (108)	528 (18)	3732 (70)

Table 2 (cont.)
(b) Thermal parameters in the form $-\frac{1}{4}\left\{\sum \sum B_{i j} h_{i} h_{j} a_{i}^{*} a_{j}\right\}$

	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{O}(1)$	5.92 (23)	$5 \cdot 00$ (21)	$3 \cdot 21$ (21)	$-0 \cdot 13(17)$	-0.54 (19)	$-0 \cdot 17$ (17)
	$5 \cdot 70$ (09)	$4 \cdot 60$ (08)	$3 \cdot 43$ (07)	-0.12 (07)	-0.20 (06)	-0.17(06)
O(3)	$5 \cdot 22$ (21)	$4 \cdot 72$ (20)	$3 \cdot 81$ (19)	-0.47 (18)	-0.36 (17)	$0 \cdot 39$ (16)
	$4 \cdot 71$ (08)	4.41 (07)	$3 \cdot 76$ (07)	-0.73 (06)	$0 \cdot 02$ (06)	$0 \cdot 06$ (06)
O(4)	5.05 (20)	$3 \cdot 48$ (18)	$3 \cdot 62$ (19)	-0.40 (16)	$0 \cdot 32$ (17)	$0 \cdot 41$ (17)
	$4 \cdot 85$ (08)	$3 \cdot 12$ (06)	$4 \cdot 10$ (07)	-0.33 (06)	$0 \cdot 52$ (06)	$0 \cdot 34$ (05)
C(1)	$4 \cdot 17$ (30)	$3 \cdot 68$ (30)	$3 \cdot 43$ (32)	$0 \cdot 35$ (26)	$0 \cdot 87$ (27)	-0.06 (28)
	$4 \cdot 06$ (10)	$3 \cdot 50$ (09)	$3 \cdot 36$ (09)	0.41 (07)	0.93 (07)	0.02 (07)
C(2)	$3 \cdot 90$ (27)	$3 \cdot 57$ (28)	$2 \cdot 85$ (30)	$0 \cdot 27$ (24)	0.72 (23)	0.05 (23)
	3.69 (09)	$3 \cdot 12$ (08)	$3 \cdot 14$ (08)	$0 \cdot 24$ (07)	$1 \cdot 10$ (07)	$0 \cdot 17$ (06)
C(3)	$3 \cdot 61$ (27)	4.09 (30)	3.04 (31)	0.09 (24)	0.66 (24)	-0.35 (24)
	3.42 (09)	$3 \cdot 52$ (08)	3.24 (08)	$0 \cdot 12$ (07)	$1 \cdot 00$ (07)	0.02 (07)
C(4)	$4 \cdot 36$ (30)	$3 \cdot 51$ (27)	$3 \cdot 27$ (29)	-0.36 (22)	$0 \cdot 29$ (25)	$0 \cdot 48$ (20)
	$4 \cdot 18$ (10)	$3 \cdot 70$ (09)	$3 \cdot 18$ (09)	$0 \cdot 24$ (08)	$0 \cdot 42$ (07)	$0 \cdot 61$ (07)
C(22)	$6 \cdot 19$ (36)	$3 \cdot 70$ (28)	$3 \cdot 89$ (29)	-0.40 (25)	$0 \cdot 82$ (25)	0.64 (22)
	$5 \cdot 37$ (12)	$4 \cdot 16$ (10)	$4 \cdot 32$ (10)	-0.31 (09)	$1 \cdot 88$ (09)	$0 \cdot 74$ (08)

In the Cu I refinement the $B_{\text {iso }}$ for the hydrogen atoms were $\mathrm{H}(3) 3.79 ; \mathrm{H}(41)$ and $\mathrm{H}(42) 3.09 ; \mathrm{H}(221), \mathrm{H}(222)$ and $\mathrm{H}(223) 3.89$. In the Mo II refinement the $B_{\text {iso }}$ for the hydrogen atoms were $\mathrm{H}(3) 4 \cdot 29 ; \mathrm{H}(41)$ and $\mathrm{H}(42) 3.69 ; \mathrm{H}(221), \mathrm{H}(222)$ and $\mathrm{H}(223) 4.62$.
thermal parameters of the hydrogen atoms were allowed to vary. In the last cycle the average ratio parameter shift/standard deviation was 0.27 . The final parameters from this calculation are listed in Table 2, where the parameters based on the Cu I data set are also shown. The final R value was 0.050 (unobserved structure factors were not included in the calculations).*

The crystal structure

The methyltetronic acid molecules are linked by hydrogen bonds to form infinite ribbons. One of these ribbons is represented by the three molecules connected by dashed lines in the upper part of Fig. 2. The molecule in the middle is the reference molecule with the coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ given in Table 2. The other molecules belonging to the ribbon have coordinates $\left(x_{1} \pm n_{i}, y_{1}, z_{1} \pm n_{i}\right)$ (n_{i} integers $1 \rightarrow \infty$). The hydrogen bonds are between $\mathrm{O}(3)-\mathrm{H}(3)$ groups and the $\mathrm{O}(1)$ atoms. They are rather short with $O(3) \cdots O(1)=2 \cdot 600$ $\AA . \mathrm{O}(3)-\mathrm{H}(3)$ is about $0.9 \AA$ and $\mathrm{H}(3) \cdots \mathrm{O}(1)$ about $1.7 \AA$. The hydrogen atom is situated near the line connecting $\mathrm{O}(3)$ and $\mathrm{O}(1)\left[\mathrm{O}(3)-\mathrm{H}(3) \cdots \mathrm{O}(1)=171^{\circ}\right]$. Besides the hydrogen bond there are short contacts within the ribbons, between $\mathrm{C}(4)$ and $\mathrm{O}(1)(3.065 \AA)$, and between $\mathrm{C}(3)$ and $\mathrm{O}(1)(3 \cdot 202 \AA)$. All other intermolecular contacts involving carbon and oxygen atoms are longer than $3 \cdot 4 \AA$.

There are short hydrogen-hydrogen and heavy at-om-hydrogen contacts between atoms belonging to different molecules. The shortest of these is $2.56 \AA$ between $\mathrm{H}(222)$ and $\mathrm{H}(221)$ and $2.59 \AA$ between two $\mathrm{H}(222)$ atoms. The only other distance shorter than $2 \cdot 7 \AA$ is $2 \cdot 64 \AA$ between $\mathrm{O}(4)$ and $\mathrm{H}(41)$.

The molecular structure

The perpendicular distances from the atoms to a plane through the α-methyltetronic acid molecule are given in Table 3. From this table one concludes that the ring is slightly buckled. The major part of the molecule is

> * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30639 (3 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 1 NZ, England.
> Table 3 . Deviations (\AA) of atoms for the plane through the α-methyltetronic acid molecule

Equation of plane in monoclinic space

$$
-3.406 x+9.014 y+3.491 z=-0.1645
$$

(a) Deviations of atoms included in calculating the plane $\begin{array}{lrlll}\mathrm{O}(1) & -0.001 ; & \mathrm{O}(3) & -0.002 ; & \mathrm{C}(1) \\ \mathrm{C}(2) & 0.001 ; & \mathrm{C}(3) & 0.000 \\ \mathrm{O} & 0.002 ; & \mathrm{C}(22) & 0.000\end{array}$
(b) Deviations of atoms not included in calculating the plane $\mathrm{C}(4) \quad 0.025 ; \quad \mathrm{O}(4)-0.009 ; \quad \mathrm{H}(3) \quad 0.007$
planar (within the limits of accuracy) but $C(4)$ and $O(4)$ deviate significantly from the plane and in opposite directions.

Details about the molecular structure are given in Fig. 3 and in Table 4 the bond lengths and angles are compared with those for other tetronic acids. The structures of these compounds are very similar. Bond lengths and angles agree well (except for a few bonds in the MacDonald \& Alleyne work).

According to the classical valence structure there are three carbon-carbon single bonds and one carboncarbon double bond in methyltetronic acid. This is also

Fig. 2. The molecular packing in α-methyltetronic acid. The molecules in two unit cells are shown. In addition two molecules in adjacent cells are shown. Atoms may be identified by the hydrogen atoms [one at $\mathrm{O}(3)$, two at $\mathrm{C}(4)$ and three at $\mathrm{C}(22)]$.

Fig. 3. Perspective drawing of one molecule of α-methyltetronic acid. Atoms are represented by ellipsoids enclosing 50% of thermal displacements. Parameters from Mo data refinement.

Table 4. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ involving carbon and oxygen atoms in α-methyltetronic acid and similar molecules

Ascorbicacid	α, γ-Dimethyltetronic acid (Lawrence \& MacDonald 1969)	α-Methyltetronic acid		
		This work	This work	MacDonald
(Hveslef, $1968)$		Mo II data	Cu I data	\& Alleyne (1963)
$\mathrm{R}(\alpha)=\mathrm{OH}$	$\mathrm{R}(\alpha)=\mathrm{CH}_{3}$	$\mathrm{R}(\alpha)=\mathrm{CH}_{3}$	$\mathrm{R}(\alpha)=\mathrm{CH}_{3}$	$\mathrm{R}(\alpha)=\mathrm{CH}_{3}$
$\stackrel{\mathrm{R}}{ }(\underline{y})=$	$\mathrm{R}(\gamma)=\mathrm{CH}_{3}$	$\mathrm{R}(\gamma)=\mathrm{H}$	$\mathrm{R}(\gamma)=\mathrm{H}$	$\mathrm{R}(\gamma)=\mathrm{H}$

$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 216$ (2)	1-22*	$1 \cdot 219$ (3)	1.228 (7)	1.21 (2)
$\mathrm{C}(2)-\mathrm{R}(\alpha)$	1.361 (2)	$1 \cdot 52$	$1 \cdot 505$ (4)	1.497 (7)	1.57 (2)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.326 (3)	$1 \cdot 30$	$1 \cdot 326$ (3)	$1 \cdot 334$ (7)	$1 \cdot 24$ (2)
$\mathrm{C}(4)-\mathrm{R}(\gamma)$	1.521 (4)	$1 \cdot 52$	1.326 (3)	1	
$\mathrm{C}(1)-\mathrm{C}(2)$	1.452 (3)	$1 \cdot 45$	$1 \cdot 436$ (3)	1.438 (7)	$1 \cdot 47$ (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.338 (2)	1.34	$1 \cdot 335$ (3)	$1 \cdot 341$ (7)	$1 \cdot 37$ (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.493 (3)	1.53	$1 \cdot 494$ (4)	$1 \cdot 492$ (7)	1.59 (2)
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 444$ (2)	$1 \cdot 43$	$1 \cdot 435$ (3)	$1 \cdot 447$ (7)	$1 \cdot 41$ (2)
$\mathrm{O}(4)-\mathrm{C}(1)$	1.355 (2)	1.34	1.359 (3)	$1 \cdot 355$ (7)	1.36 (2)
$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$109 \cdot 5$ (2)	111	$110 \cdot 9$ (2)	$111 \cdot 6$ (5)	111 (1)
$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{O}(1)$	121.4 (3)	121	118.4 (2)	$118 \cdot 2$ (5)	121 (1)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$129 \cdot 1$ (2)	128	$130 \cdot 7$ (2)	$130 \cdot 2$ (5)	128 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107 \cdot 8$ (2)	105	$106 \cdot 7$ (2)	$105 \cdot 4$ (5)	106 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{R}(\alpha)$	124.6 (2)	124	$123 \cdot 3$ (2)	124.5 (5)	127 (1)
$\mathrm{R}(\alpha)-\mathrm{C}(2)-\mathrm{C}(3)$	127.5 (2)	131	129.9 (2)	$130 \cdot 1$ (5)	127 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	109.5 (2)	111	$110 \cdot 2$ (2)	111.8 (5)	109 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$133 \cdot 5$ (2)	126	$126 \cdot 8$ (2)	$125 \cdot 8$ (5)	127 (1)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$117 \cdot 1$ (2)	122	122.9 (2)	$122 \cdot 4$ (5)	124 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	104.0 (2)	102	$103 \cdot 8$ (2)	$102 \cdot 5$ (5)	102 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{R}(\gamma)$	114.8 (2)	115	-	-	(1)
$\mathbf{O}(4)-\mathbf{C}(4)-\mathbf{R}(\gamma)$	110.4 (2)	110	-	-	-
$\mathrm{C}(1)-\mathrm{O}(4)-\mathrm{C}(4)$	109.1 (2)	111	$108 \cdot 3$ (2)	$108 \cdot 6$ (5)	112 (1)

* Standard deviations are not given by Lawrence \& MacDonald; for bond lengths they are probably about $0.02 \AA$.
the general conclusion to be drawn from the structure determination. Some of the bonds, however, are modified in a way which is common to all the compounds listed in Table 4.
The best base for comparing $\mathrm{C}-\mathrm{C}$ bonds has been given by Stoicheff (1962). Stoicheff's summary of bonds (henceforth called standard bonds) will be used in the following discussion, although it is based on open-chain molecules.
In the tetronic acids three types of $\mathrm{C}-\mathrm{C}$ bonds are present. The length of bond type $>\mathrm{C}=\mathrm{C}=[\mathrm{C}(2)-\mathrm{C}(3)]$ is $1.34 \AA$ in close agreement with Stoicheff's standard bonds (e.g. $1 \cdot 344 \AA$ in acrolein and $1 \cdot 336 \AA$ in propylene). The length of bond type $>\mathrm{C}-\mathrm{C} \leq[\mathrm{C}(1)-\mathrm{C}(2)]$ is definitely shorter ($1.44 \AA$) than the standards for this type of bond (e.g. $1-472 \AA$ in acrolein and $1.476 \AA$ in butadiene). The third type of bond in tetronic acids is the $>\mathrm{C}-\mathrm{C} \leqslant$ species. Bonds belonging to this type [$\mathrm{C}(2)-\mathrm{C}(22)$ and $\mathrm{C}(3)-\mathrm{C}(4)]$ are of same length ($1 \cdot 50 \AA$) as the standard bonds given by Stoicheff (e.g. in propylene, $1.501 \AA$).

The most interesting part of the structure from a chemical point of view is the chain

The lengths of $\mathrm{C}-(\mathrm{OH})$ bonds at $s p^{2}$-hybridized carbon atoms are usually found to be in the range 1.3-1.4 \AA. It has been found (Andersen, 1971) that there is an inverse proportionality between $\mathrm{C}-(\mathrm{OH})$ bond length and acidic strength (acid dissociation constants). It is therefore not surprising that the tetronic acids (with dissociation constants around 10^{-4}) have $\mathrm{C}-(\mathrm{OH})$ bond lengths at the lower end of the above-mentioned range. The shortness of the $\mathrm{O}(3)-\mathrm{C}(3)$ and $\mathrm{C}(2)-\mathrm{C}(1)$ bonds and the acidic strength of the tetronic acids suggest that the following structure contributes to the ground state of the tetronic acid structure:

in which the net positive charge on $O(3)$ should enhance the release of the proton.

The $\mathrm{C}-\mathrm{O}$ bonds in the lactone ring have, as usual, different lengths.

Table 5 contains bond lengths and angles involving the hydrogen atoms.

It is a pleasure to thank Dr Per M. Boll of Odense University for providing the crystal material (in a suitable form) used in this investigation. All calculations were performed at NEUCC Lyngby, Denmark. We

Table 5. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ involving hydrogen atoms in α-methyltetronic acid
Parameters from the final Mo II data refinement.

$\mathrm{C}(22)-\mathrm{H}(221)$	$0 \cdot 9$	$\mathrm{C}(2)-\mathrm{C}(22)-\mathrm{H}(221)$	101
$\mathrm{C}(22)-\mathrm{H}(222)$	$0 \cdot 9$	$\mathrm{C}(2)-\mathrm{C}(22)-\mathrm{H}(222)$	111
$\mathrm{C}(22)-\mathrm{H}(223)$	0.9	$\mathrm{C}(2)-\mathrm{C}(22)-\mathrm{H}(223)$	116
$\mathrm{O}(3)-\mathrm{H}(3)$	$0 \cdot 9$	$\mathrm{H}(221)-\mathrm{C}(22)-\mathrm{H}(222)$	108
$\mathrm{C}(4)-\mathrm{H}(41)$	$1 \cdot 0$	$\mathrm{H}(221)-\mathrm{C}(22)-\mathrm{H}(222)$	124
$\mathrm{C}(4)-\mathrm{H}(42)$	$1 \cdot 0$	$\mathrm{H}(222)-\mathrm{C}(22)-\mathrm{H}(223)$	99
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{H}(41)$	110	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(42)$	113
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{H}(42)$	110	$\mathrm{H}(41)-\mathrm{C}(4)-\mathrm{H}(42)$	103
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(41)$	115	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{H}(3)$	108

wish to thank the Carlsberg Foundation for financial support.

References

Andersen, E. K. (1971). Experimentelle studier over strukturen af hydroxyquinoner og deres salte. Dissertation, Odense Universitetsforlag.
Hvoslef, J. (1968). Acta Cryst. B24, 23-35.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 201-209. Birmingham: Kynoch Press.
Lawrence, J. \& MacDonald, S. G. G. (1969). Acta Cryst. B25, 1247-1251.
MacDonald, S. G. G. \& Alleyne, A. B. (1963). Acta Cryst. 16, 520-524.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The X-RAY system. Univ. of Maryland, College Park, Maryland.
Stoicheff, B. P. (1962). Tetrahedron, 17, 135-141.

Acta Cryst. (1975). B31, 398

The Structure of Fluorides. IX. The Orthorhombic Form of Molybdenum Hexafluoride

By J.H.Levy, J.C.Taylor and P.W.Wilson
Chemical Technology Division, Australian Atomic Energy Commission Research Establishment, Lucas Heights, Private Mail Bag, Sutherland, New South Wales, 2232, Australia

(Received 24 May 1974; accepted 16 September 1974)

Abstract

The crystal structure of molybdenum hexafluoride at 193 K has been determined by powder neutron diffraction with the least-squares profile-fitting refinement technique, and a specially constructed cryostat. MoF_{6} at 193 K is orthorhombic, space group Pnma ($D_{2 h}^{16}$) with $a=9.559(9), b=8.668(8), c=$ $5 \cdot 015$ (5) \AA and $Z=4$, and is isostructural with $U F_{6}$. The refinement gave $R=\sum\left(\mid I_{o_{i}}-I_{c i}\right) / \sum I_{o_{i}}=0 \cdot 11$. The fluorine layers are distorted from perfect hexagonal close packing by the Mo-F bonding. The MoF_{6} octahedra are nearly regular, with Mo-F distances of 1.766 (12)-1.861 (29) \AA and $\mathrm{F}-\mathrm{Mo}-\mathrm{F}$ angles of $82 \cdot 3(15)-95 \cdot 4(10)^{\circ}$. The $F-F$ contacts in an octahedron are $2 \cdot 39-2 \cdot 67 \AA$, and external to the octahedron, 2.92-3-22 Å.

Introduction

The second and third-row transition metals $\mathrm{Mo}-\mathrm{Rh}$ and W-Pt form a series of hexafluorides with melting points from 343 K for RhF_{6} to 273 K for PtF_{6} (Canterford \& Colton, 1968). These hexafluorides all undergo a solid-state transformation from a low-temperature phase, which is probably orthorhombic, to a hightemperature phase of body-centred cubic symmetry. The transformation temperatures lie between 263.6 K for MoF_{6} and 275.2 K for PtF_{6} (Siegel \& Northrop, 1966). Because this phase change occurs at 263.6 K for MoF_{6}, the sample had to be cooled below this temperature to study the orthorhombic phase.

Crystalline UF $_{6}$ was shown to be orthorhombic and its structure solved by Hoard \& Stroupe (1958). Siegel \& Northrop (1966) obtained X-ray powder photographs of the low- and high-temperature phases of all the above hexafluorides, and observed a similarity between the X-ray powder patterns of the low-temperature phases and that of UF_{6}. The X-ray patterns, however, were not suitable for detailed structural analysis, and single crystals of the hexafluorides could not be
isolated. No crystallographic work other than the above appears to have been carried out on these hexafluorides.

The present structural investigation of MoF_{6} was performed by the powder neutron-diffraction method. This technique has far more favourable atomic scattering factors than X-ray diffraction, while the effects of absorption and extinction are negligible.

Experimental

MoF_{6} was prepared by direct fluorination of molybdenum (O'Donnell, 1956). The sample was distilled twice before use; it was handled using only vacuum and dry-box techniques appropriate to metal hexafluorides (O'Donnell \& Stewart, 1966).

The sample was cooled using the cryostat shown in Fig. 1. The cryostat design was such that the outer jacket and the heat shield were sufficiently large in diameter to prevent diffraction lines from aluminum appearing in the collected pattern. The inner jacket was fitted with a brass base-plate to aid thermal conduction to the sample. The cryostat was rotated at

